Viking Academy Trust

Calculation Policy
 Chilton Primary School

Approved by the Trust:
Reviewed annually:

Last review date:

Signed:
Chair of Trustees

CALCULATION POLICY The Viking Academy Trust

Schools in the Viking Academy Trust (VAT)

Chilton Primary School
Ramsgate Arts Primary School

Upton Junior School

This 'Calculation' policy is specifically for Chilton Primary School

1. Rationale:

At the Viking Academy Trust, we believe all employees must ensure their mathematical subject knowledge is relevant conditional to current methodologies and expectations in teaching mathematics.

2. Purpose:

To establish an accessible document that clearly outlines the progression through each of the four calculations within mathematics; addition, subtraction, multiplication and division. With the help of concrete, pictorial and abstract representations, teachers are able to use this document in order to plan a succession of effective lessons regarding the conceptualised teaching and learning of calculation.

3.1 Guidelines:

This policy is separated firstly into the four calculations and then additionally by year group in order to show a clear route of development through years 3 to 6 in addition, subtraction, multiplication and division; including the expected formal abstract written methods, visual representations and links to other areas of the curriculum.

This policy should be used alongside other school mathematics initiatives such as Primary Advantage Maths in which a further wealth of concrete, pictorial and abstract representations of the four calculations can be found.

4. Technical Terms:

4.1 Mastery: to acquire a solid enough understanding of maths that's been taught to enable him/her to move on to more advanced material. Teachers keep the class working together on the same topic, whilst at the same time addressing the need for all pupils to master the curriculum and for some to gain greater depth of proficiency and understanding. Mastery of the curriculum requires that all pupils: have sufficient depth
of knowledge and understanding to reason and explain mathematical concepts and procedures and use them to solve a variety of problems.
4.2 Greater depth: Beyond mastery. Greater depth still means the same expected standard (curriculum level), but at a deeper level. These children will most likely be children who 'grasp concepts quickly' for these children we should provide 'rich and sophisticated problems' and we shouldn't just be getting them to move on to the next year group's work. Pupils to be working at greater depth should
 confidently and independently be able to deal with increases in complexity, deduction and reasoning.

4.3 Fluency:

Practise of different mathematical concepts taught. For example, practising addition or subtraction via calculations.

4.4 Varied Fluency:

Practising different methods through calculations, but which look different to what children are expecting. For example:
?= 784+383

4.5 Problem Solving:

Problem solving is about engaging with real problems; guessing, discovering and making sense of mathematics (real problems don't have to be 'real world' applications, they can be within mathematics itself). The main criterion is that they should be unique and new to the student. Problem solving skills include: orking systematically, logical reasoning, spotting patterns, working backwards (inverse), spotting patterns, trial and improvement, visualising.

4.7 Reasoning:

Reasoning enables children to make use of all their other mathematical skills and so reasoning could be thought of as the 'glue' which helps mathematics makes sense.

1. When first encountering a new challenge.
2. When logical thinking is required.
3. When a range of starting points is possible.
4. When there are different strategies to solving a problem.
5. When there is missing information.
6. When selecting a problem-solving skill.
7. When evaluating a solution in context.
8. When there is more than one solution.

5 Formal Written Guidance.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	To add a 1 digit and a 2 digit number using the 'regrouping into tens and ones' strategy. Vertical addition with no regrouping. (2 digit + 1 digit not bridging 10)	To add numbers regrouping in ones (bridging 10) To add numbers regrouping in 10s (Bridging 100)	Column method without regrouping (up to 3 digits) Begin regrouping when appropriate.	Column method with regrouping (up to 4 digits)	Column method with regrouping (up to 4 digits and beyond) Decimals with the same amount of decimal places.	Column method with regrouping (up to 4 digits and beyond) Decimals with different amounts of decimal places.
Subtraction	To subtract within 20 by regrouping into tens and ones Counting on and backwards. To make number sentences	To subtract up to 2 digit numbers with no regrouping. To subtract up to 2 digits with regrouping.	Column method without regrouping (up to 3 digits) Begin regrouping when appropriate.	Column method with regrouping (up to 4 digits)	Column method with regrouping 9 (up to 4 digits and beyond) Decimals with the same amount of decimal places.	Column method with regrouping (up to 4 digits and beyond) Decimals with different amounts of decimal places.
Multiplication	Repeated addition, arrays, and multiplication stories.	Multiply using partitioning. Using multiplication /division facts. Bar model for multiplication	Counting in multiples. Repeated addition. Arrays - showing commutativity. Partitioning using the grid method.	Column (vertical) multiplication (2 and 3 digit multiplied by 1 digit)	Column (vertical) multiplication Long multiplication (up to 4 digit multiplied by 1 or 2 digits)	Column (vertical) multiplication Long multiplication (multi digit up to 4 digits multiplied by 2 digits)
Division	Relate division to repeated subtraction. Use arrays to solve division problems. To make links multiplication and division.	Concrete and visual resources to reflect division. To divide with remaindersconcrete and pictorial. Create number families.	Division with arrays. Division with a remainder. Short division (2 digit by 1 digit)	Division with arrays. Division with a remainder. Short division (up to 3 digits by 1 digit)	Short division (Up to 4 digits by 1 digit) Remainders can be interpreted in different ways.	Short division Long division (Up to 4 digits by 2 digits) Remainders interpreted as whole numbers, fractions or round.

EYFS 2 Addition

Key Vocabulary: add, more, and, make, sum, total, altogether, score, double, one more, two more, how many more?
Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.
Represent and use number bonds and related subtraction facts within 10
Add and subtract one-digit and two-digit numbers to 20 including zero
Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations , and missing number problems such as $7=-9$

Year 1 Addition

Key Vocabulary: add, more, plus, make, sum, total, altogether, score, double, near double, one more, two more, ten more, how many more to make...?, how many more is... than...? How much more is...?
Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs. Represent and use number bonds and related subtraction facts within 20. Add and subtract one-digit and two-digit numbers to 20 including zero Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems
Mental
Maths

Addition Year 2

Vocabulary: add, more, plus, make, sum, total, altogether, score, double, near double, one more, two more, ten more, how many more to make...?, how many more is... than...? How much more is...?
Key Skills: subtract numbers using concrete objects, pictorial representations, and mentally, including: - A two digit number and ones - A two digit number and tens - Add two two-digit numbers - Adding three one digit numbers
Mental Children should explore and understand how to use blank number lines to add using their knowledge of place maths value and how to partition numbers in different ways. Once confident they should move onto written partitioning methods.

Adding a 2 digit number and units
Adding a 2 digit number and tens
Adding two 2 digit numbers

$16+7$

$34+23=57$
$30+20=50$
$4+3=7$
Partitioning should be started with 2 digit numbers that do not bridge the tens or hundreds so children become fully confident with the method itself
Once children are confident they can start using the partitioning method to add numbers that bridge the tens and hundreds boundaries.
$246+132=378$
$200+40+6$
$100+30+2$
$300+70+8=378$
Introduce the partitioning column method with numbers that do not bridge so children become confident with the method itself.
Add units first!

Addition Year 3

Key Vocabulary: Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, numberline, sum, tens, units, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact
Key Skills: To add a three digit number and tens without regrouping. To add 2 three-digit numbers without regrouping .To add threedigit numbers with regrouping. To add using place value counters. To develop and recognise patterns in addition. To estimate the answer to a calculation. To solve word problems

Mental calculations	$\begin{array}{ll} \hline 246+132=378 & \begin{array}{c} \text { Introduce the partitioning column method with numbers that do not bridge so children } \\ \text { become confident with the method itself. } \\ 200+40+6 \\ 100+30+2 \\ 300+70+8=378 \end{array} \\ 337+188=525 & \begin{array}{l} \text { Once confident, children can start using the partitioning column method to solve problems } \\ \text { that bridge the tens and hundreds boundaries. } \\ 300+30+7 \\ \frac{100+80+8}{400+110+15=525} \end{array} \end{array}$
Written addition TU +TU HTU + TU $\mathrm{HTU}+\mathrm{HTU}$	
Links to other strands	Pupils should estimate the answers to a calculation and use inverse operations to check answers. Add amounts of money using both pounds ($£$) and pence (p) in practical and appropriate contexts. Measure, compare and add lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$), mass (kg / g) and volume/capacity ($1 / \mathrm{ml}$).

Year 4 Addition

Key Vocabulary: add, addition more, plus, increase, make, sum, total, altogether, score, double, near double, one more, two more, ten more, one hundred more, how many more to make...?, how many more is... than...? How much more is...?

Tens boundary, hundreds boundary, inverse.
Main learning intentions: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. Estimate and use inverse operations to check answers to a calculation. Solve addition and subtraction two step word problems in context, deciding which operations and methods to use and why.

Mental Maths	Practise mental methods with increasingly large numbers. See year 3 guidance Consolidate partitioning and re-partitioning Use compensation for adding too much/little and adjusting. Use straws, Dienes, place value counters, Empty number lines etc. I know that $63+29$ is the same as $63+30-1$ 55 Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging through ten and hundred Complementary addition (mental number lino) $\begin{aligned} 55+37 & =55+30+7 \\ & =85+7 \\ & =92 \end{aligned}$
Written methods HTU + HTU ThHTU + HTU ThHTU + ThHTU	
Links to other strands	Add amounts of money using both pounds ($£$) and pence (p) in practical and appropriate contexts. Measure, compare and add lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$), mass (kg / g) and volume/capacity ($1 / \mathrm{ml}$). Calculate the perimeter of composite rectilinear shapes using different units of measurement.

Year 5 Addition

Key Vocabulary: add, addition more, plus, increase, make, sum, total, altogether, score, double, near double, one more, two more, ten more, one hundred more, how many more to make...?, how many more is... than...? How much more is...? Tens boundary, hundreds boundary, inverse.
Main learning intentions: Add and subtract whole numbers with more than 4 digits, including formal written methods (columnar addition and subtraction). Add and subtract numbers mentally with increasingly large numbers. Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Mental Maths	Add numbers mentally with increasingly large numbers, e.g. 12,462 + 2,300 = 14,762 Mentally add tenths, and one-digit numbers and tenths. Add decimals, including a mix of whole numbers and decimals, decimals with different numbers of places, and complements of 1 (e.g. $0.67+0.33=1$) Children use representation of choice Refer back to pictorial and physical representations when needed. Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging through ten and hundred Complementary addition (mental number line)
Written methods Add whole numbers >4 digits, including using formal written methods (columnar addition). ```Decimals up to 2dp (eg 72.5 + 45.7)```	$E 23: 59$ $t \in 7: 55$ $E\}!\cdot!4$ Adding decimals including using part part whole method. $\frac{\mathrm{f} \text { (8). } 53 . \mathrm{f} \text { (31). (41) }}{(94 \mathrm{p}}$
Links to other areas of curriculum	Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why. To round, estimate and add numbers to solve worded problems. To solve missing number calculations. Use all four operations to solve problems involving measure (e.g. length, mass, volume/capacity, money, duration) using decimal notation. Calculate the perimeter of composite rectilinear shapes using different units of measurement. Use angle sum facts and other properties to make deductions about missing angles. Solve comparison, sum and difference problems using information presented in a line graph.

Year 6 Addition

Key Vocabulary: add, addition more, plus, increase, make, sum, total, altogether, score, double, near double, one more, two more, ten more, one hundred more, how many more to make...?, how many more is... than...? How much more is...? Tens boundary, hundreds boundary, inverse.
Main learning intentions: Perform mental calculations, including with mixed operations and large numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Solve problems involving addition, subtraction, multiplication and division. Use estimation to check answers to calculations and determine, the in context of a problem, an appropriate degree of accuracy.

Mental	Perform mental calculations, including with mixed operations and large numbers (more complex calculations)	
Methods	Children use representation of choice. Consolidate partitioning and re-partitioning. Use compensation for adding too much/little and adjusting. Refer back to pictorial and physical representations when needed. See years 3, 4 and 5 guidance for further scaffolding of less able.	Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts

Subtraction EYFS 2

Vocabulary: take (away), leave, how many are left/left over?, how many have gone?, one less, two less, how many fewer is... than...?, difference between, is the same as.
Children count reliably with numbers from 1 to 20, place them in order (see number and place value) and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer

Mental Maths	Mental calculation strategies Say the number name that goes before a given number (one less) Choose two groups of objects to make a given total. Say how many are left when some are taken away by counting how many are left. Say how many are left when some are taken away, by counting back from a number. Find out how many have been removed by counting up to the larger number.
Concrete/ Pictorial representations	Using numbers \& objects to represent subtraction sentences. Part, part, whole number bonds. compare amounts
Progression to bar model	Paring number sentences and representing as concrete bar. $6-2=4$

Subtraction Year 1

Vocabulary: - , subtract, take (away), minus, leave, how many are left/left over? , how many have gone?, one less, two less, ten less, how many fewer is...than...?, how much less is...? Difference between, half, halve.
Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs. Represent and use number bonds and related subtraction facts within 20. Add and subtract one-digit and two-digit numbers to 20 including zero Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problem

Subtraction Year 2

Vocabulary: - , subtract, subtractions, take (away), minus, leave, how many are left/left over? , how many have gone?, one less, two less, ten less, one hundred less, how many fewer is...than...?, how much less is...? Difference between, half, halve, tens boundary, regroup.
Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals ($=$) signs. Represent and us A two digit number and ones - A two digit number and tens - Add two two-digit numbers - Adding three one digit numbers

Mental Maths	Mental calculation strategies Number line Counting sticks Halving Counting up Partitioning Counting on to or back from largest number.

To know by heart all addition and subtraction facts for each number to 20
To use number bonds for mental subtraction

To add and subtract mentally a 'near multiple of ten' to or from a two digit number. To find pairs of numbers
Use dienes, 100 square, number lines and cubes to assist with mental methods.
Developing
partitioning

Once children develop their confidence of counting back they will be able to select more efficient jumps to solve a problem and will not have to partition the tens and units numbers separately. $\begin{array}{lllll}17 & 20 & 22 & 42\end{array}$
Once confident with efficient jumps, children are ready to subtract by bridging through 10, again partitioning is very important here and the children will need to be very confident with partitioning in different ways

Use manipulatives to break numbers into parts for subtraction strategies.

Progression to written method	To subtract a one digit number from a two digit number without regrouping To subtract 2 two-digit numbers without regrouping. To subtract a one digit number from a two digit number with regrouping To subtract 2 two-digit numbers with regrouping
	$\begin{array}{r} 28 \\ -\quad 6 \\ \hline 22 \\ \hline \end{array}$
2 by 1 digit with exchanging	
$2 \quad$ digit subtraction with exchanging	

Subtraction Year 3

A three-digit number and ones - A three- digit number and tens - A three- digit number and hundreds Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Estimate the answer to a calculation and use inverse operations to check answers. Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction.
Vocabulary: - , subtract, subtractions, take (away), minus, leave, how many are left/left over? , how many have gone?, one less, two less, ten less, one hundred less, how many fewer is...than...?, how much less is...? Difference between, half, halve, tens boundary, hundreds boundary, regroup.

Subtraction Year 4

Key vocab: take away, subtract, how many are left, how much left, difference between, how much more, how many more to make, decrease, inverse and the minus sign.
Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. Estimate and use inverse operations to check answers to a calculation. Solve addition and subtraction two step word problems in context, deciding which operations and methods to use \& why.

Mental Maths	Continue to subtract increasingly lar Consolidate partitioning and re-part Use compensation for adding too mu Use straws, Dienes, place value coun Empty number lines etc.	numbers. oning $h / l i t t l e ~ a n d ~ a d j u s t i n g . ~$ rs,	Mental calculation strategies Find differences by counting up Partitioning Applying known facts Bridging through 10 and multiples of 10 Subtracting 9, 11 etc. by compensating Counting on to, or back from the largest number ROUNDING
Concrete/ Pictorial representations		72.47 \qquad	

Progression to written method	Subtract numbers with up to four digits, using formal written methods of columnar subtraction. Build on formal, extended method (see year 3) using exchange wherever necessary. Continue to use representations and manipulatives to develop understanding of place value. $\begin{array}{rr} 60 & 1 \\ 300+70+2 \\ -\quad 100+40+7 \\ \hline 200+20+5 \\ \hline \end{array}$
Progression into word problems	3677 tickets are sold by Jim. Bob sells 1542 less tickets. How many tickets did Bob sell?
Links to other strands	Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why. Solve simple measure and money problems involving fractions and decimals to 2dp. Estimate and use inverse operations to check. Estimate, compare and calculate different measures, including money in pounds and pence in context

Subtraction Year 5

Add and subtract whole numbers with more than 4 digits, including formal written methods (columnar addition and subtraction). Add and subtract numbers mentally with increasingly large numbers. Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
Key vocab: take away, subtract, how many are left, how much left, difference between, how much more, how many more to make, decrease, inverse and the minus sign.

Mental Maths	Continue to subtract increasingly large numbers.	Mental calculation strategies
	Consolidate partitioning and re-partitioning	Find differences by counting up
	Use compensation for adding too much/little and adjusting.	Partitionin
	Use straws, Dienes, place value counters.	Aplying known facts
		Bridging through 10 and multiples
		of 10
	Subtracting 9,11 etc. by	
compensating		
		Counting on to, or back from the
		largest number
ROUNDING		

Concrete/ Pictorial representations
Progression to written method

Subtraction Year 6

Perform mental calculations, including with mixed operations and large numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Solve problems involving addition, subtraction, multiplication and division. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
Key vocab: - , subtract, subtractions, take (away), minus, leave, how many are left/left over? , how many have gone?, one less, two less, ten less, one hundred less, how many fewer is...than...?, how much less is...? Difference between, half, halve, tens boundary, hundreds boundary, regroup.

Multiplication EYFS 2

Key Vocab: count in, double, halve, lots of, groups of, times, group in pairs, equal groups of.
Using quantities and objects, they add two single-digit numbers and count on or back to find the answer. They solve problems, including sharing, doubling and halving.

Multiplication Year 1

Key Vocab: count in, double, halve, lots of, groups of, times, group in pairs, equal groups of, x, times, multiplied by, multiple of, one, twice, three times, ten times, repeated addition, array, row, column.
Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Mental Maths	To count in twos, fives and tens Use arrays and counting sticks to count backwards and forwards. To count in twos, fives and tens Count forwards and backwards in 2s from any given number. Count forwards and backwards in 5s from any given number. Count forwards and backwards in 10s from any given number. Recognition of all odd and even numbers Rapid recall of doubles to 20
Progression into written statements	$2+2+2=6$ $2 \times 3=6$ 3 multiplied by 2 $\begin{aligned} & 6+6=12 \\ & 6 \times 2=12 \end{aligned}$ 3 lots of 2
Progression into worded problems	There are 3 children and each child has three sweets. How many sweets do they have altogether? $\begin{aligned} & 3+3+3=9 \\ & 3 \times 3=9 \end{aligned}$ Can you make a multiplication story about these fish?

Multiplication Year 2

Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
Key vocab: count in, double, halve, lots of, groups of, times, group in pairs, equal groups of, x, times, multiplied by, multiple of, one, twice, three times, ten times, times as (big, long, wide... and so on) repeated addition, array, row, column

Multiplication Year 3

Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.
Key vocab: : double, times, multiply, multiplied by, multiple of, lots of, groups of, times as (big, long, wide...) product, lots of, groups of, repeated addition, array, row, column.

Mental Maths	Rapid recall of 3, 4 and 8 times tables Multiply any single digit by 1, 10, 100 and 0 Multiply a two digit number by $2,3,4$, or 5 without crossing the tens boundary. Reflect on year 2 understanding of 2, 5 and 10 times tables. Division facts: $3 \times 4=12,12 \div 4=3,12 \div 3=4$	Use doubling to connect 2,4 and 8 times tables. Develop efficient mental methods using commutativity and associativity. Derive related muliplication and division facts. The commutative law: $4 \times 12=12 \times 4$ Partitioning: multiply the tens first and then multiple the units. Arrays Deriving related facts: $\begin{gathered} 3 \times 2=6,6 \div 3=2,6 \div 2=3 \\ 30 \times 2=60,60 \div 3=20,60 \div 2=30 \end{gathered}$
Concrete representations No regrouping	T 0 T 4 13 T 3 3	
Column multiplication with regrouping		
Progression into written methods	Make the link to expanded method Finally, short multiplication method. Estimate before calculating to develop number f Ensure written methods build on or relate to me	30 5 10 35$35=245$ grid method using arrays. grid just using partitoning te \qquad ncy. methods.

Progression into worded problems	Mr Miaow had 8 bags of cat treats. Each bag contained 156 cat treats. He fed
Links to other strands	Solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. The comparison of measures includes simple scaling by integers, e.g. a given measurement or quantity is twice as long or five times as high. Pupils now use multiples of $2,3,4,5,8,10,50$ and 100 . Pupils understand and use simple scales in pictograms and bar charts with increasing accuracy.

Multiplication Year 4

Recall multiplication and division facts for multiplication tables up to 12×12. Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. Recognise and use factor pairs and commutativity in mental calculations. Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects
Key vocab: : double, times, multiply, multiplied by, multiple of, lots of, groups of, times as (big, long, wide...) product, lots of, groups of, repeated addition, array, row, column, factor, inverse.

Mental Maths	Recall multiplication and division facts for multiplication tables up to 12×12 Use place value, known and derived facts to multiply and divide mentally, inclu Multiplying by 0 and 1 ; Dividing by 1 ; Multiplying three numbers together. Recognise and use factor pairs and commutativity in mental calculations. Practise mental methods and extend this to three-digit numbers to derive facts, (for example $600 \div 3=200$ can be derived from $2 \times 3=6$) The associative law: $(2 \times 3) \times 4=2 \times(3 \times 4)$ The distributive law: $39 \times 7=30 \times 7+9 \times 7$ Using facts and rules: $2 \times 6 \times 5=10 \times 6=60$
Concrete/ Pictorial representations	Use arrays made with place value counters to demonstrate the link between multiplication and division.
Concrete/ Pictorial representations	
Progression into written methods	To multiply a 2 digit number by a 1 digit number To multply a 3 digit number by a 1 digit number To multiply a 2 digit by a 2 digit number
Links to other strands	Convert between different units of measure (e.g. km to m) Relate area to arrays and multiplication Pupils understand and use a greater range of scales in their representations (statistics)

Multiplication Year 5

Key Vocab: times, multiply, multiplied by, product, multiple, inverse and x sign, double, times, multiply, multiplied by, multiple of, lots of, groups of, times as (big, long, wide...) product, lots of, groups of, array, row, column, factor.
Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19. Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two digit numbers. Multiply numbers mentally drawing upon known facts. Multiply whole numbers and those involving decimals by 10, 100 and 1000

Mental Maths	Multiply numbers mentally drawing upon known facts Multiply whole numbers and those involving decimals by 10, 100 and 1000 Use square numbers and cube numbers, and the notation for squared(2) and cubed (3) To use understanding of factors to solve times table facts. Use factors for finding products mentally ($16 \times 12=16 \times 3 \times 2 \times 2=48$ x2x2 = 96×2 = 192) To double using known facts (double $79=$ double $70+$ double $9=140+18=158$) Double a number ending in 5 and halve the other number
Pictorial representations	
Progression into written methods Up to 4 digits by 1. Use of expanded method.	
Links to other strands	Identify multiples \& factors, including finding all factor pairs of a number, \& common factors of two numbers. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime). Establish whether a number up to 100 is prime and recall prime numbers up to 19. Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes, and including understanding the meaning of the equals sign. Use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling. Convert between different units of metric measure; problems including money. Other links: ratio.

Multiplication Year 6

Key vocab: times, multiply, multiplied by, product, multiple, inverse and x sign, double, multiple of, lots of, groups of, times as (big, long, wide...) product, lots of, groups of, repeated addition, array, row, column.
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. Perform mental calculations, including with mixed operations and large numbers Identify common factors, common multiples and prime numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations. Solve problems involving addition, subtraction, multiplication and division. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Mental Maths	
Pictorial representations	\times 5 0.6 0.05 9 45 5.4 0.45 50.85\times 20 9 200 4000 1800 80 5000 6000 720 2320 6 120 54 8294 Use place value counters for concrete representations of multiplication.
Written methods Link back to expanded where necessary.	
Links to other strands	Explore the order of operations using brackets; e.g. $2+1 \times 3=5$ and $(2+1) \times 3=9$. Fractions, decimals and percentages including equivalences in different contexts. Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. Solve problems involving the calculation of percentages (e.g. of measures, such as 15% of 360) and the use of percentages for comparison. Solve problems involving similar shapes where the scale factor is known or can be found. Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. Algebra including formulae, linear number sequences, combinations of variables. Measurement including solving problems with conversion of units, decimal notation, area and volume. Statistics including pie charts, line charts and calculating the mean.

Division EYFS

Key vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of,
Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing

Division Year 1

Key vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of, \div, divide, divided by, divided into, left, left over., halve.
Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Division Year 2

Key vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of, \div, divide, divided by, divided into, left, left over, halve.
Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals $(=)$ signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Division Year 3

Key vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of, \div, divide, divided by, divided into, left, left over, remainder, halve.
Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Division Year 4

Key vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of, \div, divide, divided by, divided into, left, left over, remainder, factor, quotient, divisible by, inverse.
Recall multiplication and division facts for multiplication tables up to 12×12. Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. Recognise and use factor pairs and commutativity in mental calculations. Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

$591 \div 3=197$

Links to other
Convert between different units of measure (e.g. km to m ; hour to minute). strands
Estimate, compare and calculate different measures, including money in pounds and pence.

Division Year 5
Key vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of, \div, divide, divided by, divided into, left, left over, remainder, factor, quotient, divisible by, inverse
Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19 . Multiply and divide numbers mentally drawing upon known facts. Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000. Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3). Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Mental Maths	Pupils should be taught to: Divide whole numbers and those involving decimals by 10,100 and 1000. Divide numbers mentally drawing upon known facts. Identify multiples and factors, including finding all factor pairs of a number, and common factrors of two numbers. $\begin{aligned} & \text { If } 42 \div 6=7 \text {. } \\ & \div 10 \div 10 \\ & \text { Then } 4.2 \div 6=0.7 \end{aligned}$ "I know that the answer to $138 \div 6$ will be close to 20 , because $2 \times 6=12$, so $20 \times 6=120$."
Concrete/Pictorial representations	
Progression into written methods	Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.
	$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$ 0855.40 remender $5 \longdiv { 4 ^ { 4 } 2 ^ { 2 } 7 ^ { 2 } 7 ^ { 2 } 0 }$ $5 \longdiv { 0 8 5 5 } 5$

Division Year 6

Key Vocab: share, share equally, one each, two each, three each, group in pairs, threes...., equal groups of, \div, divide, divided by, divided into, left, left over, remainder, factor, quotient, divisible by, inverse.
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. Perform mental calculations, including with mixed operations and large numbers. Identify common factors, common multiples and prime numbers Use their knowledge of the order of operations to carry out calculations involving the four operations.

