
 
 

 

 

 

 

 

 
 

 

 

The VIKING ACADEMY TRUST Computing Policy for ‘Ramsgate Arts Primary 

School’ has been written after consultation with staff and following DfE 

guidance.   

 

 

 

 

 

 

Approved by the Trust: Term 1 2018 

Reviewed annually: Term 6 

Last review date: Term 5 2018 

Signed:  

Chair of Trust 



Computing Policy 

The Viking Academy Trust 

Ramsgate Arts Primary School 

Schools in the Viking Academy Trust (VAT) 
 

We start 2017-18 academic year with three schools in the Viking Academy Trust.   

 

These are: 

 
Chilton Primary School 

Ramsgate Arts Primary School 

Upton Junior School 

 

This Computing Policy is specific to Ramsgate Arts Primary School.  

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 



 

RAMSGATE ARTS PRIMARY SCHOOL COMPUTING EDUCATION POLICY 

(reviewed September 2017) 

What is computational thinking?  
“A high quality computing education equips pupils to use computational thinking and 

creativity to understand and change the world.” (Computing National Curriculum)  

 

Computational thinking allows us to develop skills and techniques to help us solve 

problems effectively, with or without the aid of a computer. Computational thinking is 
not ‘thinking like a computer’ – computers are not capable of thought. Rather, it is 

learning to think in ways which allow us, as humans, to solve problems more effectively 

and, when appropriate, use computers to help us do so.  

 
Computational thinking involves 6 different concepts and 5 approaches to working: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EYFS  
There is lots of opportunity to encourage the building blocks of computational thinking. 

For example, with support, pupils can work collaboratively to build the highest tower, or 

to work out the best way to negotiate climbing equipment.  

 
At this level pupils can, with support, understand algorithms, decomposition, and abstraction, for 
example working out how to ‘get dressed for winter’ involves decomposing the problem 

and sequencing instructions (algorithms).  

 
They are also focussing only on the important elements, rather than the detail 

(abstraction).  

KS1  
Pupils can sequence simple algorithms using decomposition of simple problems, such as 

how to grow a plant from seed. They may label the parts of a flower (decomposition), 

and check with a partner to see if their work is correct (collaborative debugging and evaluation). 

Pupils can consider whether a problem is best solved with or without a computer.  

 
For example, when finding out about a particular topic, say how methods of transport 

have changed over time, would it be best to look in a book, or look on the internet? How 

can they conduct the internet search in the most efficient way?  

 
Similarly, if they wanted to take a picture of something so others could see it, which 

device, if you have a choice, would be best to use and why?  

 

KS2  
As pupils progress through key stage 2 they can demonstrate increasing levels of 

computational thinking as their cognitive ability develops; decomposing to an increasing 

number of levels, designing algorithms and implementing programs with increasing 

confidence.  

 
They can spot patterns and abstract more readily, focussing on relevant detail only; for 

example in maths working out that if they complete a multi-step problem in a particular 

way, are more likely to reach the correct answer (or vice versa!).  
Computational thinking approaches become more familiar, for example, pupils can debug a 

problem more effectively, whether that is finding and correcting grammatical errors in 

a piece of text or code, either independently or collaboratively. 

 
A classroom culture in which collaboration and ‘trying-things-out’ (tinkering) is actively 

encouraged, while over-reliance on the teacher is discouraged can help to build pupils’ 

confidence alongside their computational thinking.  

 
(barefootcas.org.uk/wp-content/.../Computational-thinking-Barefoot-Computing.pdf) 

Viking Academy Trust – Understanding the terminology of Computational Thinking  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

• What's needed? How can we simplify the 
information?  

• Links between ideas

• Concepts, ideas

• Useful and useless information

Abstraction

• Break into parts

• Smaller sized solutions to each part

• Organise the information  / data

Decomposition 

• Logic, sequencing

• Selection

• Debug 

• Test Hypothesis

Algorithmic 
Thinking

• Judge

• Use a criteria

• Draw out conclusions

Evaluation

• See Patterns

• See Solutions to other problems

• Summarize findings

Generalize



  

Algorithm Algorithm 

(programming) 

Evaluation 

Decomposition Generalisation Pattern 

Spotting 

Abstraction Design Sequence Selection Repetition Variable Use Input Output Debugging 

Think of a simple 

every day 

algorithm 

(Remove tooth- 

paste top, 

squeeze tooth- 

paste onto brush) 

Identify if an algorithm 

does what you want it to 

do read?) 

Break a simple 

everyday algorithm 

into parts (breakfast, 

getting changed, walk 

to school) 

Recognise where 

an idea is adapted and 

used again as directed 

by the teacher  

Spot simple 

patterns in code 

or algorithm 

(simple regular 

2d logo shapes) 

Define all the 

elements in 

something and 

then remove the 

ones that are not 

needed  

 

Following 

instructions to 

create 

 

 

Follow simple 

everyday 

sequences of 

instructions 

use single 

simple 

condition 

 

Explore and use 

simple repetition 

in music and 

dance 

variable used to 

hold number or 

word and reported  

 

simple inputs 

(keys, mouse click, 

switch etc) control 

on or off  

Recognise that 

there is a problem 

say what problem is 

read and follow 

symbol sequence 

algorithm 

(PE Cards, jump, 

step etc) 

Recognise that 

there are more than one 

algorithm to do the 

same thing  

 

Observe a working 

program and 

decompose its 

elements as a class  

 

Pupil chooses to 

Adapt ideas that they 

have used to solve 

similar problems  

 

Spot patterns in 

algorithm or 

code and 

continue the 

patterns  

 

 Add small non 

critical 

adaptations  

 

Create simple 

everyday 

sequences of 

instructions 

create selection 

within a loop 

 

Create simple 

repeat x times 

loop (Scratch Jr, 

scratch music 

notes in  repeat 

loop, repeat x in 

logo) 

multiple non 

connected 

variables used 

Changing state 

other than on off 

such as fast slow 

bright dim etc  

 

identify where in 

the code or 

algorithm bug/ 

problem occurs 

Create simple 

sequence 

algorithms using 

symbols  

 

Recognise that 

one algorithm may be 

better  

Observe a working 

program and 

decompose its 

elements as an 

individual 

 

   Adapt a given 

design for a new 

teacher given 

purpose  

 

create sequence 

of symbols  

 

Use single 

math’s 

operator 

condition  

Create non 

terminating 

continuous 

(forever) loop  

 

variables that 

change inside a 

loop  

 

Use sensors to 

control or report 

 

Debug simple 

sequence errors 

independently 

Read and follow 

written sequence 

algorithms 

(Forward 3, right 

90) 

Design an algorithm 

/code for a specific 

person or group of 

people (design a Scratch 

program for younger 

pupils) 

Create a pro- gram by 

decom- posing it into 

parts and solving parts 

separately  

 

   Repurposing ide- 

as for a pupil 

chosen purpose  

 

create sequence of 

simple code that 

can be easily read  

Multiple 

selection 

beyond if and 

else (Scratch use 

of multiple ifs   

 

loops within 

loops for a 

reason 

variables inter- 

acting with other 

variables  

 

 Debug simple 

repetition, 

selection & variable 

errors 

independently 

write simple 

sequence 

algorithms using 

words, use rules 

algorithms 

Evaluate more 

complex code that does 

the same thing (Logo 

design with procedures 

and with- out, Scratch 

code with loops and 

without) 

     create multiple 

sequences running 

concurrently  

 

Multiple 

conditions using 

AND OR NOT 

 

Create and use 

loops that 

terminates when 

condition met 

 

  Debug repetition, 

selection & variable 

errors 

independently 

Read and follow 

algorithms with 

selection and 

repetition  

 

      create sequences 

or multiple 

sequences where 

timing is critical 

(control sprite on 

 

    Dividing up code 

to find where the 

error is or running 

Scratch sets of 

blocks separately 

Complete 

unfinished 

algorithms with 

selection and or 

repetition  

 

 COLOUR KEY MAINLY KS1 ONLY KS1 & KS2 MAINLY KS2 ONLY KS2 & KS3       

Create an algo 

rithm with selec- 

tion or repetition 

         cod e-it .co.u k    



 

 

 

 

 

 

 

 

 

 

 

 

Sample Progressions of Assessment and Skills – With Badges.  

Pink (Ks1) – Yellow (Ks1/2) – Orange (Ks2) – Blue (Ks2) – Purple (Ks2/3) 

 

 

 

 

 

Sample Skills for the “Class-teacher” and used to support Digital Literacy 



EYFS 

The use of IPads within the classroom (APPS, Cameras, a tool)  

Control technologies – Beebots and Bluebots and remote control cars etc 

Devices to record sounds, create videos and draw artwork 

Use the Interactive Whiteboard to collaborate with others (take turns and share ideas)  

 

KS1 
The use of IPads within the classroom (APPS for control, develop debugging skills, logical 

reasoning and a learning tool)  

Control technologies – Beebots and Bluebots and remote control cars etc 

Devices to record sounds, create videos and draw artwork 

Use the Interactive Whiteboard to collaborate with others (take turns and share ideas)  

Support learning in English, Maths and other curriculum areas 

 

Ks2 (Y3/4) 
The use of IPads within the classroom (APPS, Cameras, a tool). Support Computing 

Chromebooks / Windows Tablets to support online research, flash based resources, VLE. Support the 

Computing Curriculum with creating algorithms, debugging, creating and solving problems and 

puzzles.   

Control technologies – SPheros SPRK – Probots 

Devices to record sounds, create videos and draw artwork 

Use the Interactive Whiteboard to collaborate with others (take turns and share ideas)  

 

Ks2 (Y5/6) 
Chromebooks to support online research, flash based resources, VLE. Support the Computing 

Curriculum with creating algorithms, debugging, creating and solving problems and puzzles.   

Windows tablets to prepare children for the future at home and at work. Minecraft and Kudo for 

computing 

Mbot – build and control own robots (Bluetooth)  

Devices to record sounds, create videos and draw artwork 

Collaborate with ideas, concepts and use technologies to support.  

  



Aims 
• To enable children to become autonomous, independent users of computing, gaining 

confidence and enjoyment from their activities 

• To develop a whole school approach to computing ensuring continuity and progression in 

all strands of the computing National Curriculum 

• To use computing as a tool to support teaching, learning and management across all 

areas of the curriculum 

• To provide children with opportunities to develop their computing capabilities in all 

areas specified by the Curriculum. 

• To ensure ICT is used, when appropriate, to improve access to learning for pupils with a 

diverse range of individual needs, including those with SEN and disabilities 

• To maximise the use of computing in developing and maintaining links between other 

schools, the local community including parents and other agencies. 

 

Objectives 

In order to fulfil the above aims it is necessary for us to ensure: 

• a continuity of experience throughout the school both within and among year groups 

• the systematic progression through key stages 1 & 2 

• that the National Curriculum programmes of study and their associated strands, level 
descriptions and attainment target are given appropriate coverage  

• that all children have access to a range of ICT resources 

• that computing experiences are focussed to enhance learning 
• that cross curricular links are exploited where appropriate 

• that children’s experiences are monitored and evaluated 

• that resources are used to their full extent 

• that resources and equipment are kept up to date as much as possible 

• that staff skills and knowledge are kept up to date 

 

By the end of Key Stage 1 pupils should be taught to: 
 

• Understand what algorithms are, how they are implemented as programs on digital 

devices, and that programs execute by following a sequence of instructions 

• Write and test simple programs 
• Use logical reasoning to predict and computing the behaviour of simple programs 

• Organise, store, manipulate and retrieve data in a range of digital formats 

• Communicate safely and respectfully online, keeping personal information private, and 

• recognise common uses of information technology beyond school. 
 

By the end of key stage 2 pupils should be taught to: 

 



• Design and write programs that accomplish specific goals, including controlling or 

simulating physical systems; solve problems by decomposing them into smaller parts 
• Use sequence, selection, and repetition in programs; work with variables and various 

forms of input and output; generate appropriate inputs and predicted outputs to test 

programs. 

• Use logical reasoning to explain how a simple algorithm works and to detect and correct 
errors in algorithms and programs. 

• Understand computer networks including the internet; how they can provide multiple 

services, such as the world-wide web; and the opportunities they offer for 

communication and collaboration  
• Describe how internet search engines find and store data; use search engines 

effectively; be discerning in evaluating digital content; respect individuals and 

intellectual property; use technology responsibly, securely and safely. 

• Select, use and combine a variety of software, (including internet services), on a range 

of digital devices to accomplish given goals, including collecting, analysing, evaluating 

and presenting data and information.  

 
 


